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Abstract

In this paper we develop an algebraic technique for building relativistic models
in the framework of the direct-interaction theories. The interacting mass
operator M in the Bakamjian–Thomas construction is related to a quadratic
Casimir operator C of a non-compact group G. As a consequence, the S
matrix can be gained from an intertwining relation between Weyl-equivalent
representations of G. The method is illustrated by explicit application to a
model with SO(3, 1) dynamical symmetry.

PACS numbers: 21.45.+v, 24.10.Jv, 02.20.−a, 03.65.Fd, 11.80.−m

1. Introduction

The role of dynamical symmetries in quantum theory has been emphasized by many authors
and its implications for physically relevant quantities have been widely recognized. In this
connection the importance and relevance of dynamical symmetries has been discussed in
several directions [1–3].

Since the work of Zwanziger [4] it has become clear that group-theoretical methods can be
successfully applied to the solution of scattering problems. In that paper Zwanziger has shown
how the symmetry group SO(3, 1) allows for an algebraic determination of the Coulomb S-
matrix elements. A fundamental step towards a deep understanding of scattering problems in
a group-theoretical framework was made by the Yale group and others [5] with their method
of Euclidean connection. The key point in this major development lies in the observation that
the dynamical group G that describes the scattering system in the presence of interactions can
be obtained by the deformation [6] of the group G0 (called asymptotic group) describing the
system in the absence of interactions. It appears that knowledge of the interrelation between
the representations of G with those of G0 allows purely algebraic calculations of S-matrix
elements for systems whose Hamiltonian H (in the centre of mass system) belongs to the
centre of the enveloping algebra of G, i.e.,

H = f (C), (1)
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where C is the Casimir operator of G. Later on [7], it has been argued that the S matrix
for systems under consideration is associated with intertwining operators between Weyl-
equivalent representations of G (see below). At this stage we note that the operator A is said
to intertwine the representation T χ and T χ̃ of the group G if the relation

AT χ(g) = T χ̃ (g)A, for all g ∈ G (2)

or equivalently,

AdT χ(a) = dT χ̃ (a)A, for all a ∈ g (3)

holds, where dT χ and dT χ̃ are the corresponding representations of the algebra g of G [8, 9].
The hypothesis that scattering systems can be completely described by some dynamical

group has been verified for almost all interesting non-relativistic problems. Moreover, the
algebraic approach is useful not only for systems with exact symmetry, but also for systems
with broken symmetry. In this case the arguments in an expression of the S matrix with an
exact symmetry are substituted by generic functions of scattering variables, called algebraic
potentials [10, 11].

Contrary to the non-relativistic case, the group-theoretical approach to relativistic
scattering has not been exploited yet, with the main exception of scattering of a Dirac particle
in a Coulomb potential [13], or Coulomb plus scalar potentials [14]. In their study the authors
use relativistic wave equations. The algebraic approach, however, is more general, since it
relies on a symmetry and does not make any explicit reference to an equation of motion.

Interestingly, there exists an alternative approach to the relativistic particle dynamics
based on the work of Bakamjian and Thomas [15] which has the advantage of being somewhat
group-theoretical. The point is that one can consider the problem of construction of relativistic
theories as that of construction of unitary representations of the inhomogeneous Lorentz group,
ISO(3, 1), also known as Poincaré group P [16].

The Lie algebra of the Poincaré group has ten basis elements, which can be chosen as
H, P, J and K, which are the generators of time translations, space translations, space rotations
and pure Lorentz transformations, respectively. They satisfy the commutation relations

[Pi, Pj ] = 0, [Pi,H ] = 0, [Ji,H ] = 0 (4)

[Ji, Jj ] = iεijkJk, [Ki,Kj ] = −iεijkJk, [Ji,Kj ] = iεijkKk (5)

[Ji, Pj ] = iεijkPk, [Pi,Kj ] = −iδijH. (6)

(Throughout this paper units are used in which h̄ = c = 1.) Here δij is the Kronecker symbol,
εijk the Levi–Civita symbol and the summation convention on repeated indices is assumed.
The operators H, P and J have the physical significance of energy, momentum and angular
momentum. According to [16] an elementary particle should be described by positive energy
unitary irreducible representation (m, s, +) of the Poincaré group P , where m is the mass and
s denotes the spin and + means positive energy. Therefore, the description of N noninteracting
particles is given by the tensor product of representations (mi, si, +), i = 1, 2, . . . .

The problem of adding interactions to the noninteracting representation of the Poincaré
group P consistent with the commutation relations (4) has been discussed by Dirac [17].
Although Dirac did not propose a practical method of constructing an interacting representation
of the Poincaré group P , he emphasized that there are three possible schemes for incorporating
interactions into the noninteracting representation. These schemes are now called ‘instant
form’, ‘front form’ and ‘point form’. Later on, Bakamjian and Thomas [15] have proposed
a method for adding interactions to a noninteracting representation of the Poincaré group. In
their approach a set of 10 auxiliary operators is introduced that satisfies simple commutation
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relations. For example, in the instant form the 10 auxiliary operators are {P, S, X,M} with
commutation relations

[Pi,Xj ] = −iδij , [Si, Sj ] = iεijkSk (7)

all other commutators vanishing, where S is the intrinsic spin, X = i∇P , and M is the invariant
mass operator. The Poincaré generators are then expressed in terms of {P, S, X,M} according
to

H =
√

M2 + P2, J = X × P + S, K = 1

2
(XH + HX) +

P × S

H + M
. (8)

In the Bakamjian–Thomas approach interactions are added to the mass operator M, while
leaving the other nine operators equal to those of the noninteracting system (for review see
[18]). As a result, the problem is reduced to an eigenvalue equation for the mass operator M.

The question naturally arises: can a group structure be introduced into the space on which
the mass operator M is defined, and if so, does it also have useful consequences? Here the
mass operator M is assumed to be a function of the Casimir operator of a non-compact group.
This allows pure group-theoretical description of the S matrix. We apply this construction to
a scattering system with SO(3, 1) dynamical symmetry.

2. Two-body systems

We consider a system of two interacting spinless particles of mass m1 and m2. In building up
a relevant representation of the Poincaré group P , it is convenient to start with the free system

H0 =
2∑

a=1

ha, P̂0 =
2∑

a=1

p̂a, J0 =
2∑

a=1

(x̂a × p̂a) (9)

K0 =
2∑

a=1

1

2
(x̂aha + ha x̂a), (10)

where

ha =
√

m2
a + p̂2

a. (11)

The operator x̂a is canonically conjugate to p̂a[
p̂i

a, x̂
j
a

] = −iδij (12)

The non-interacting mass operator M̂0 is defined by

M̂2
0 = H 2

0 − P̂2
0. (13)

It commutes with all generators of the Poincaré group P .
The basis states of the carrier space of this representation can be taken as the tensor

products of the single-particle states. They are defined by

p̂a|p1p2〉 ≡ pa|p1p2〉, a = 1, 2 (14)

and normalized so that

〈p1p2|.p′
1p′

2〉 = δ3(p1 − p′
1)δ

3(p2 − p′
2) (15)

and ∫
dp1dp2|p1p2〉〈p1p2| = 1. (16)
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It will be convenient to make a change of variables from p1 and p2 to P and k, with P the
total momentum and k the relative momentum. These variables are related to p1 and p2 by
equations [19]

P = p1 + p2, k = (ε2p1 − ε1p2)/(ε1 + ε2) (17)

with

εa = 1
2 [Ea + wa], (18)

where Ea and wa are given by

Ea = Ea(pa) =
√

m2
a + p2

a, wa = wa(k) =
√

m2
a + k2. (19)

Note that the relative momentum k is equal to the three momentum of particle 1 in the centre
of mass system (P = 0). Hence, wa is the c.m. energy of a particle of mass ma . The total c.m.
energy can be expressed in the Poincaré-invariant form

w1(k) + w2(k) = √
s, (20)

where

s = (p1 + p2)
2 = (E1 + E2)

2 − (p1 + p2)
2. (21)

The state vectors |Pk〉 and |p1p2〉 are related to each other via [19]

|Pk〉 = [J (p1, p2)]
1
2 |p1p2〉, (22)

where the Jacobian J (p1, p2) is given by

J (p1, p2) =
∣∣∣∣∂(p1p2)

∂(P, k)

∣∣∣∣ = E1E2

E1 + E2

w1 + w2

w1w2
. (23)

On the basis {|Pk〉}, the non-interacting Hamiltonian H0 and the non-interacting mass operator
M̂0 are multiplication operators

H0|Pk〉 = (w2 + P2)1/2|Pk〉, M̂0|Pk〉 = w|Pk〉, (24)

where

w = w(k) =
√

m2
1 + k2 +

√
m2

2 + k2. (25)

Other generators are

J0 = X̂ × P̂ + l̂, K0 = 1

2
(X̂H0 + X̂H0) − l̂ × P̂

M0 + H0
, (26)

where

l̂ = ρ̂ × k̂ (27)

is the internal angular momentum operator. The operators ρ̂ and X̂ are canonically conjugate
to k̂ and P̂ and therefore

[k̂i , ρ̂j ] = −iδij , (28)

and

[P̂i , X̂j ] = −iδij . (29)

To introduce the interaction one lets M0 → M , where the interacting mass operator M̂

is assumed to be the sum of the non-interacting mass operator M̂0 plus the mass-operator
interaction V̂

M̂ = M̂0 + V̂ . (30)
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The set of operators H, P, J and K will satisfy the commutation relations of the Poincaré
group P provided that the following conditions for V̂ are satisfied

[V̂ , P] = 0, [V̂ , J] = 0. (31)

(These constraints lead to the conservation of linear and angular momenta for the interacting
system.) In [15] the operator V̂ is taken to be a (rotationally) scalar operator function of k̂ and
ρ̂ only

V̂ = V (k̂, ρ̂). (32)

The scattering theory within the framework of the Bakamjian–Thomas construction has
been considered by the several authors [18–23]. The ‘in’ and ‘out’ scattering states �± are
solutions of the relativistic Schrödinger equation

H�±
p1p2

= [E1(p1) + E2(p2)]�
±
p1p2

. (33)

Although not needed here, we note that the states �+
p1p2

and �−
p1p2

are the solutions of the
Lippmann–Schwinger equation

�±
p1p2

= |p1p2〉 +
1

E1(p1) + E2(p2) − H0 ± i0+
H ′�±

p1p2

= |p1p2〉 +
1

E1(p1) + E2(p2) − H ± i0+
H ′|p1p2〉, (34)

where H ′ is the interaction Hamiltonian

H ′ = H − H0 (35)

while |p1p2〉 is a solution of

H0|p1p2〉 = [E1(p1) + E2(p2)]|p1p2〉. (36)

The scattering operator S is defined by [24, 25]

�+
p1p2

= Ŝ�−
p1p2

(37)

and the S-matrix elements are accordingly determined by

S(p′
1, p′

2; p1, p2) = 〈
�+

p′
1p′

2

∣∣Ŝ�+
p1p2

〉 = 〈
�−

p′
1p′

2

∣∣�+
p1p2

〉
. (38)

It has been proved (e.g. section 6 of [19] ) that the Bakamjian–Thomas construction guarantees
the Poincaré invariance of the operator S.

In [19] has been shown that

S(p′
1, p′

2; p1, p2) = [J (p′
1, p′

2)J (p1, p2)]
− 1

2 δ3(P′ − P)
〈
	−

k′
∣∣.	+

k

〉
, (39)

where 	±
k denote the ‘in’ and ‘out’ eigenstate of the mass operator M̂ , with asymptotic relative

momentum k

M̂	±
k = w	±

k , (40)

where the c.m. energy w is given by

w = w(k) =
√

m2
1 + k2 +

√
m2

2 + k2. (41)

More precisely, the states 	±
k are the solutions of the Lippmann–Schwinger equation

	±
k = |k〉 +

1

w(k) − M̂0 ± i0+
V̂ 	±

k (42)

= |k〉 +
1

w(k) − M̂ ± i0+
V̂ |k〉, (43)
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where |k〉 is a solution of

M̂0|k〉 = w|k〉. (44)

For two particles with equal masses m1 = m2 = m equation (40) simplifies to(
2
√

m2 + k̂2 + V̂
)
	±

k = 2
√

m2 + k2	±
k . (45)

Squaring both sides and making some rearrangement, equation (45) can put in the form
[22, 26, 27] (

k̂2

m
+ V̂

)
	±

k = E	±
k (46)

with E = k2/m and

V̂ = 1

2m

{
V̂ ,

√
m2 + k̂2

}
+

V̂ 2

4m
. (47)

Equation (46) is identical in structure to a non-relativistic Schrödinger equation.
We can define the S matrix related to (46)

	+
k = S	−

k . (48)

Note, this S matrix is different from the previous one. The principal difference between
the scattering operators in (37) and (48) is that while the former commutes with generators
H, P, J and K of the Poincaré group P , the latter commutes with generators l̂ of a group being
isomorphic to SO(3).

According to (48)〈
	−

k′
∣∣	+

k

〉 = 〈
	+

k′
∣∣S	+

k

〉 = S(k′, k). (49)

Separating from S(k′, k) the non-interacting part, it is customary to write

S(k′, k) = δ3(k′ − k) − 2π iδ(E ′ − E)T (k′, k), (50)

where T (k′, k) is called the T matrix or transition amplitude. Since V is rotationally invariant
the transition amplitude T (k′, k) may be a function of k ≡ |k| and cos θ = n′ · n only, where
n′ = k′/k′ and n = k/k. It related to the c.m. scattering amplitude f (θ) by equation [28]

T (k′, k) = − 1

2π2m
f (θ), (51)

where θ is the c.m. scattering angle.
Inserting these relations into equation (39) and using the identities

δ3(P′ − P)δ(E ′ − E) = 2m

E
δ3(P′ − P)δ(E′ − E) (52)

and [19]

δ3(P′ − P)δ3(k′ − k) = J (p1, p2)δ
3(p′

1 − p1)δ
3(p′

2 − p2) (53)

we find that

S(p′
1, p′

2; p1, p2) = δ3(p′
1 − p1)δ

3(p′
2 − p2) − 2π iδ4(p′

1 + p′
2 − p1 − p2)

× M(p1, p2;p′
1, p

′
2)

(2E1)1/2(2E2)1/2(2E′
1)

1/2(2E′
2)

1/2
, (54)

where

M = −√
sf (θ)/π2 (55)
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is an invariant amplitude. Thus, in order to determine S(p′
1, p′

2; p1, p2), it is sufficient to know
the c.m. scattering amplitude f (θ)

f (θ) = 1

2ik

∞∑
l=0

(2l + 1)(Sl − 1)Pl(cos θ), (56)

where Pl are Legendre polynomials and Sl is the S matrix element for angular momentum l.
The two-body cross section is given by

dσ

dt
= π5|M|2√

(p1p2)2 − m4
, (57)

where t is the momentum transfer squared, i.e.,

t = (p′
1 − p1)

2. (58)

It may be written as
dσ

d
= |f (θ)|2 (59)

It seems reasonable to assume that there might be a relativistic interacting system that has
a non-compact group G as dynamical symmetry group in the sense that

k̂2

m
+ V̂ = f (C), (60)

where C is the Casimir operator of G. If that is the case, then the S matrix for systems under
consideration is constrained to satisfy [7]

ST χ(g) = T χ̃ (g)S, for all g ∈ G (61)

or equivalently,

S dT χ(a) = dT χ̃ (a)S, for all a ∈ g, (62)

where T χ and T χ̃ are Weyl-equivalent representations of G specified by labels χ and χ̃ ,
while dT χ and dT χ̃ are the corresponding representations of the algebra g of G. (The
representations T χ and T χ̃ have the same Casimir eigenvalues. Such representations are
called Weyl equivalent.) Equations (61) and (62) have much restriction power and are used in
deriving the S matrix [12].

In order to avoid misunderstanding, we make a few comments on equation (61) or
(62). To start with, it should be pointed out that we have in the subspace of scattering
states two complete orthonormal systems, {	+} and {	−}. The state vectors 	− transform
according to the representation T χ(g), while the state vectors 	+ transform according to
T χ̃ (g). Since by definition the operator S maps each 	− on the corresponding 	+, then
T χ̃ (g)	+ = ST χ(g)	− so that T χ̃ (g)S	− = ST χ(g)	−. This means that S must satisfy
equation (61). Moreover, if S intertwines representations T χ and T χ̃ of the Lie group G, it
also intertwines the representations dT χ and dT χ̃ of the Lie algebra g.

Finally, we would like to emphasize that, in general, k̂2/m + V̂ is some rotationally
invariant operator function of k̂ and ρ̂. So the geometrical invariance algebra of (46) is
the algebra generated by l̂. In other words, the group G has a subgroup being isomorphic
to SO(3). Since the representations T χ and T χ̃ are identical for compact subgroups of G
[29, 30], it follows from (61) and (62) that

[T χ(g),S] = 0, if g ∈ SO(3). (63)

or

[dT χ(a),S] = 0, if a ∈ so(3). (64)

as it should be.

7
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Let us apply this construction to scattering systems that have SO(3, 1) as the dynamical
symmetry group, i.e.

k̂2

m
+ V̂ = f (C1). (65)

We first note that [31, 32] the internal angular momentum operator l̂ and the operator N̂ defined
by

N̂ = 1

2
√

k̂2
[k̂ × l̂ − l̂ × k̂] (66)

span the Lie algebra of the Lorentz group SO(3, 1)

[l̂i , l̂j ] = iεijk l̂k, [l̂i , Nj ] = iεijkNk, [Ni,Nj ] = −iεijk l̂k. (67)

(The dynamical algebra (67) should not be confused with Lorentz subalgebra (5) of the
Poincaré group.) These commutation relations can be easily calculated by making use of
equations (28) and

[l̂i , k̂j ] = iεijkk̂k. (68)

Then, the S matrices for such systems can be obtained from equation (61) or (62). To this end,
a few facts from representation theory of the group SO(3, 1) are useful.

The unitary irreducible representations of SO(3, 1) are known to form three series:
principal, supplementary and discrete. It is also known that only the principal series describes
the scattering states. The principal series of SO(3, 1) are characterized by the pair χ = (τ, λ),

where λ = 0,± 1
2 ,±1, . . . , while −∞ < τ < ∞. The representations specified by labels

χ = (τ, λ) and χ̃ = (−τ,−λ) are Weyl equivalent. In every UIR of principal series of
SO(3, 1) the Casimir invariants C1 and C2

C1 = I2 − N2, C2 = I · N (69)

become equal to a multiple of the identity operator I

C1 = −(λ2 + τ 2 + 1)I, C2 = λτI. (70)

It is also worth noticing [32] that the second Casimir invariant C2 is identically zero for
the above realization of SO(3, 1)

C2 = 1

2
√

k̂2
[l̂·(k̂ × l̂) − l̂ · (l̂ × k̂)] = 0. (71)

Consequently, the relevant unitary representations will be the principal series representation
(τ, 0). It is worthwhile to point out that the second label, λ, of the (τ, λ) irrep is connected
with the helicities of particles; that is why we have the (τ, 0) irrep for spinless particles.

The representations specified by χ = (τ, 0) can be realized in the Hilbert space spanned
by the eigenvectors |τ0; lμ〉 of l̂2 and l̂3. The operators l̂i , N̂i are then defined by

l̂
χ

3 |lμ〉 = μ|lμ〉
l̂
χ
±|lμ〉 = [(l ∓ μ)(l ± μ + 1)]

1
2 |l, μ ± 1〉

N̂
χ

3 |lμ〉 = i(−1 + iτ − l)al+1,μ|l + 1, μ〉 + i(iτ + l)al,μ|l − 1, μ〉
N̂

χ
±|lμ〉 = ±i(1 − iτ + l)bl+1,±μ+1|l + 1, μ ± 1〉 ± i(iτ + l)bl,∓μ|l − 1, μ ± 1〉

where N̂± = N̂1 ± iN̂2, N̂± = N̂1 ± iN̂2, |lμ〉 ≡ |τ0; lμ〉 and

al,μ =
√

(l + μ)(l − μ)

(2l + 1)(2l − 1)
, bl,μ =

√
(l + μ)(l + μ − 1)

(2l + 1)(2l − 1)
. (72)

8
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We can now evaluate the S matrix from (62). To do this let us write equation (62) for
generators l̂3, l̂± and N̂3

S l̂
χ

3 = l̂
χ̃

3 S (73)

S l̂
χ
± = l̂

χ̃
±S (74)

SN̂
χ

3 = N̂
χ̃

3 S. (75)

Applying both sides of equations (73) and (74) to the basis vector |lμ〉 we find that the S-matrix
in the angular momentum representation is diagonal and its matrix elements are independent
of μ, i.e.,

S|lμ〉 = Sl|lμ〉. (76)

(Observe that the operator S commutes with all J
χ

i ’s, as expected.) The value of its diagonal
elements can be defined by using (73). As a result we obtain the recurrence relation

(1 − iτ + l)Sl+1 = (1 + iτ + l)Sl , (−iτ + l)Sl = (iτ + l)Sl−1 (77)

which implies that

Sl = �(1 + iτ + l)

�(1 − iτ + l)
. (78)

Inserting this into equation (56) we obtain

f (θ) = 1

2ik

�(1 + iτ)

�(−iτ)

1

sin2 θ
2

exp

[
−iτ ln

(
sin2 θ

2

)]
, θ �= 0, (79)

where the momentum-dependent parameter τ is determined by relation (65). (For (78) the
expansion diverges as a function, but it converges as a distribution [33].) For example, in
analogy to the non-relativistic Coulomb interaction, we can propose

k̂2

m
+ V̂ = − α2m

4(C1 + 1)
, (80)

where α denotes the strength of interaction. This means that(
k̂2

m
+ V̂

)
	±

k = −
(

α2m

4(C1 + 1)

)
	±

k . (81)

So, taking into account equations (46) and

C1	
±
k = −(τ 2 + 1)	±

k (82)

we have

τ = αm

2k
. (83)

It then follows that (in ordinary units)

fc(θ) = α

mv2 sin2 θ
2

(1 − β2) exp

[
−iτ ln

(
sin2 θ

2

)
+ iπ + 2iη

]
, θ �= 0 (84)

with τ = αm
2h̄k

= α
h̄v

(1 − β2)1/2. Here β = v/c, η = arg �(1 + iτ) and v is the relative velocity
of the particles.

If two spinless particles are identical the indistinguishability of them leads to the c.m.
scattering amplitude f s

c (θ) of the form

f s
c (θ) = fc(θ) + fc(π − θ). (85)

9
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This results in the differential cross section,

dσ

d
= |fc(θ) + fc(π − θ)|2 =

( α

mv2

)2
{

1

sin4 θ
2

+
1

cos4 θ
2

+
2

sin2 θ
2 cos2 θ

2

cos

×
[

α

h̄v
(1 − β2)1/2 ln tan2 θ

2

]}
(1 − β2)2. (86)

If we take the non-relativistic limit β → 0, we gain the Mott formula [34] for the Coulomb
scattering of two identical spinless bosons.

3. Conclusions and outlook

In this paper we developed an algebraic technique for building two-body relativistic models
in the framework of the direct-interaction theories, i.e., theories in which there are no external
fields. We have demonstrated how the algebraic technique [7], originally conceived for
non-relativistic scattering, can be generalized for the construction of relativistic scattering
matrix. Crucial in all the developments was the assumption that the mass operator M for
given scattering system is related to the Casimir operator of some non-compact group G. The
results described in this paper could be extended in several ways. One of these would be their
use for the scattering models with spins. Also, our analysis has been restricted to two-body
systems. It would be interesting to generalize the technique discussed in this paper to the study
of scattering problems for many-body systems. These and other extensions will be studied in
subsequent papers.
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